The Quantum Orbit Method for Generalized Flag Manifolds
نویسنده
چکیده
Generalized flag manifolds endowed with the Bruhat-Poisson bracket are compact Poisson homogeneous spaces, whose decompositions in symplectic leaves coincide with their stratifications in Schubert cells. In this note it is proved that the irreducible ∗-representations of the corresponding quantized flag manifolds are also parametrized by their Schubert cells. An important step is the determination of suitable algebraic generators of the quantized flag manifolds. These algebraic generators can be naturally expressed in terms of quantum Plücker coordinates. This note complements the paper of the author and Dijkhuizen in Commun. Math. Phys. 203 (1999), pp. 297-324, in which these results were established for a special subclass of generalized flag manifolds.
منابع مشابه
Steepest descent on real flag manifolds
Among the compact homogeneous spaces, a very distinguished subclass is formed by the (generalized) real flag manifolds which by definition are the orbits of the isotropy representations of Riemannian symmetric spaces (sorbits). This class contains most compact symmetric spaces (e.g. all hermitian ones), all classical flag manifolds over real, complex and quaternionic vector spaces, all adjoint ...
متن کاملInvariant Einstein Metrics on Generalized Flag Manifolds with Two Isotropy Summands
Let M = G/K be a generalized flag manifold, that is the adjoint orbit of a compact semisimple Lie group G. We use the variational approach to find invariant Einstein metrics for all flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume. 2000 Mathematics Subject Classification. Pr...
متن کاملGeneralized W∞ Higher-Spin Algebras and Symbolic Calculus on Flag Manifolds
We study a new class of infinite-dimensional Lie algebras W∞(N+, N−) generalizing the standard W∞ algebra, viewed as a tensor operator algebra of SU(1, 1) in a grouptheoretic framework. Here we interpret W∞(N+, N−) either as an infinite continuation of the pseudo-unitary symmetry U(N+, N−), or as a “higher-U(N+, N−)-spin extension” of the diffeomorphism algebra diff(N+, N−) of the N = N++N− tor...
متن کاملRiemannian Optimization Method on the Flag Manifold for Independent Subspace Analysis
Recent authors have investigated the use of manifolds and Lie group methods for independent component analysis (ICA), including the Stiefel and the Grassmann manifolds and the orthogonal group O(n). In this paper we introduce a new class of manifold, the generalized flag manifold, which is suitable for independent subspace analysis. The generalized flag manifold is a set of subspaces which are ...
متن کاملA generalized Cartan decomposition for the double coset space
Motivated by recent developments on visible actions on complex manifolds, we raise a question whether or not the multiplication of three subgroups L, G and H surjects a Lie group G in the setting that G/H carries a complex structure and contains G/G ∩ H as a totally real submanifold. Particularly important cases are when G/L and G/H are generalized flag varieties, and we classify pairs of Levi ...
متن کامل